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Abstract: A novel cytotoxic 17-membered macrolide, am-
phidinolide Y (1), has been isolated from a marine di-
noflagellate Amphidinium sp., and it was elucidated to exist
as a 9:1 equilibrium mixture of 6-keto- and 6(9)-hemiacetal
forms (1a and 1b, respectively) on the basis of 2D NMR data
and chemical means. The feeding experiments with 13C-
labeled acetates suggested that amphidinolide Y (1) may be
a biogenetic precursor of 16-membered macrodiolide, am-
phidinolide X (2).

In our continuing search for bioactive secondary me-
tabolites from laboratory-cultured marine dinoflagel-
lates,1 a novel cytotoxic 16-membered macrodiolide,
amphidinolide X (2), has been isolated from a dinoflagel-
late Amphidinium sp. (strain Y-42), which is a symbiont
of Okinawan marine acoel flatworm Amphiscolops sp.2
Amphidinolide X (2) is the first macrodiolide consisting
of polyketide-derived diacid and diol units from natural
sources. Our search for biosynthetic precursors of this
unique macrodiolide resulted in the isolation of a novel
17-membered macrolide, designated amphidinolide Y (1),
from the same strain. Here, we describe the isolation and
structure elucidation of 1 and its labeling patterns with
acetates.

The dinoflagellate Amphidinium sp. (strain Y-42) was
separated from a marine flatworm Amphiscolops sp.
collected off Sunabe, Okinawa. The dinoflagellate was
mass cultured unialgally at 25 °C for 14 days in a
seawater medium enriched with 1% ES supplement and
13C-labeled NaHCO3. The harvested algal cells (315 g,
wet weight, from 500 L of culture) were extracted with
MeOH/toluene (3:1), and the extracts were partitioned
between toluene and water. The toluene-soluble materi-
als were subjected to a silica gel column (CHCl3/MeOH)
followed by C18 HPLC (CH3CN/H2O) to afford amphidi-
nolide Y (1, 0.0007%, wet weight) together with known

macrolides, amphidinolides G3 (0.0008%), H3 (0.0007%),
W4 (0.009%), and X2 (2, 0.0004%). In the 13C NMR
spectrum, 10% enrichments for all carbon signals of 1
were observed.

Amphidinolide Y (1) had the molecular formula of
C26H42O6 as revealed by HRESIMS [m/z 473.2875 (M +
Na)+, -0.4 mmu]. IR absorptions at 3450 and 1711 cm-1

were attributed to hydroxyl(s) and carbonyl group(s),
respectively. 1H and 13C NMR data of 1 (Table 1) in CDCl3

disclosed the existence of a ketone, an ester carbonyl, an
sp2 quaternary carbon, three sp2 methines, two oxygen-
ated sp3 quaternary carbons, five sp3 methines (three of
which were oxygenated ones), seven sp3 methylenes, and
six methyl groups (three of which resonated as a singlet
signal each due to connection to a quaternary carbon).
In the 1H NMR spectrum of 1, a set of proton resonances
were observed in a ratio of 9:1,5 while the 13C NMR
spectrum showed some minor signals including a hemi-
acetal carbon (δC 104.56), indicating that 1 existed as a
9:1 equilibrium mixture of 6-keto and 6(9)-hemiacetal
forms (1a and 1b, respectively). Since four out of six
unsaturations were accounted for, the 6-keto form (1a)
of amphidinolide Y (1) was inferred to contain two rings.
Interpretation of the 1H-1H COSY, TOCSY, and HMQC
spectra revealed proton connectivities of the following
units: (a) from H-2 to H2-5 and H3-22, (b) from H2-8 to
H-11 and H3-24, (c) from H2-13 to H2-17, and (d) from
H2-19 to H3-21 (Figure 1). 1H and 13C NMR data of three
partial structures, a, c, and d, in 1a were similar to those
of the corresponding portions of amphidinolide X (2).
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The geometry of the disubstituted olefin (C-2-C-3) in
a was assigned as E by the 1H-1H coupling constant
[J(H-2/H-3) 15.6 Hz]. Connections among partial struc-
tures a and b through a ketone carbonyl (C-6; δC 211.09)
and an oxygenated quaternary carbon (C-7; δC 77.26)
were assigned by HMBC correlations of H2-5 (δH 2.94 and
2.38)/C-6,H-8a (δH 1.97)/C-6, H-8a/C-7, H3-23 (δH 1.35,
3H, s)/C-6, and H3-23/C-7. HMBC correlations for H2-13
(δH 2.13, 2H)/C-12 (δC 138.21), H3-25 (δH 1.70)/C-12, and
H-11 (δH 4.86)/C-13 (δC 34.74) suggested the presence of
a trisubstituted double bond at C-11-C-12, which was
assigned as E-geometry by NOESY cross-peaks for H-10
(δH 2.25)/H3-25 and H-11 (δH 4.86)/H2-13. Connectivities
among C-17, C-19, and C-26 through C-18 were deduced
from HMBC correlations of H-17a (δH 2.10)/C-18 (δC

82.96), H2-19 (δH 1.47, 2H)/C-18, and H3-26 (δH 1.23)/C-
18. The existence of an ether linkage between C-15 and
C-18 was implied by the NOESY correlation for H-15/

H3-26, thereby constructing a tetrahydrofuran ring with
syn-relation for H-15/C-26 (Figure 2). The ester carbonyl
(C-1) was shown to be adjacent to C-2 by an HMBC
correlation of H-2 (δH 5.78) to C-1 (δC 165.81). The
relatively lower-field resonance of H-16 (δH 4.87) sug-
gested that C-16 was involved in the ester linkage with
C-1. Although no HMBC correlation for H-16 to C-1 was
observed, a two-bond correlation for C-16 (δC 78.67)/C-1
was observed in the 2D DEPT C-C LR Relay spectrum,6
indicating that the ester linkage existed between C-1 and
C-16. Thus, the gross structure of the 6-keto form of
amphidinolide Y (1) was elucidated to be 1a.

The relative stereochemistry of the tetrahydrofuran
ring in 1a was deduced to be H-15/H-16-anti and H-15/
C-26-syn, which were the same as those of the corre-
sponding portion in 2, from NOESY correlations as shown
in Figure 2. The relative configurations at C-4, C-7, C-9,
and C-10 of 1a were elucidated on the basis of the J-based
configuration analysis,7 and long-range 13C-1H coupling
constants obtained from the HETLOC8 and JIMPEACH-
MBC9 spectra. The relative configuration for C-9-C-10
bond was assigned as erythro by J(H-9/H-10) (9.0 Hz),
J(C-11/H-9) (2.3 Hz), and J(C-9/H-10) (-6.2 Hz) values
as well as NOESY correlations for H-8a/H3-24, H-8b/H-
10, H-9/H-11, and H-9/H3-24 (Figure 2a).
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(8) (a) Otting, G.; Wüthrich, K. Quart. Rev. Biophys. 1990, 23, 39-
96. (b) Wollborn, U.; Leibfritz, D. J. Magn. Reson. 1992, 98, 142-146.
(c) Kurz, M.; Schmieder, P.; Kessler, H. Angew. Chem., Int. Ed. Engl.
1991, 30, 1329-1331.

(9) Williamson, R. T.; Marquez, B. L.; Gerwick, W. H.; Martin, G.
E.; Krishnamurthy, V. V. Magn. Reson. Chem. 2001, 39, 127-132.

TABLE 1. 1H and 13C NMR Data of 6-Keto Form (1a) of
Amphidinolide Y (1) in CDCl3

position δC δH (m, Hz)

1 165.81, s
2 120.05, d 5.78 d, 15.6
3 153.56, d 6.59 dd, 9.5, 15.6
4 32.07, d 3.06 m
5aa 42.60, t 2.94 dd, 11.5, 17.8
5ba 2.38 dd, 2.1, 17.8
6 211.09, s
7 77.26, s
8aa 44.94, t 1.97 d, 14.5
8ba 1.76 dd, 9.0, 14.5
9 71.01, d 3.11 t, 9.0
10 39.23, d 2.25 m
11 128.61, d 4.86 m
12 138.21, s
13 34.74, t 2.13b m
14aa 33.97, t 1.86 m
14ba 1.48 m
15 79.99, d 3.92 dt, 4.1, 11.0
16 78.67, d 4.87 m
17aa 42.67, t 2.10 dd, 7.4, 14.3
17ba 1.76 dd, 2.4, 14.3
18 82.96, s
19 44.85, t 1.47b m
20 17.82, t 1.32b m
21 14.55, t 0.91 t, 7.0
22 19.89, q 1.10c d, 6.6
23 26.58, q 1.35c s
24 16.84, q 0.87c d, 6.5
25 17.51, q 1.70c brs
26 25.74, q 1.23c s

a a and b denote low-field and high-field resonances, respec-
tively, of a geminal pair for C-5, C-8, C-14, and C-17. b 2H. c 3H.

FIGURE 1. Selected 2D (a) 1H-1H and 1H-13C and (b) 13C-
13C correlations for amphidinolide X (1).

FIGURE 2. Rotation models for (a) C-9-C-10, (b) C-8-C-9,
(c) C-7-C-8, and (d) C-4-C-5 bonds in the 6-keto form (1a) of
amphidinolide Y (1).
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From analyses of rotation models for the C-8-C-9 and
C-7-C-8 bonds (Figures 2b and 2c, respectively), the
relative configuration of the 1,3-diol at C-7 and C-9 was
assigned as a syn-relation (Figure 3). For the C-4-C-5
bond (Figure 2d), relations between C-6 and C-22 and
between H-5b and C-3 were elucidated to be both anti.
Since NOESY correlations were observed for H2-5/H3-23
and H-5a/H-8a, conformation of the C-4-C-10 portion
was elucidated as shown in Figure 4, in which the
relative configurations at C-4, C-9, and C-10 of 1a were
the same as those of C-4, C-10, and C-11 in amphidinolide
X (2).2

To determine the absolute stereochemistry of amphi-
dinolide Y (1), application of modified Mosher’s method10

for C-9 and oxidative cleavage of the C-6-C-7 bond were
carried out as follows. ∆δ values (∆δ ) δS - δR) obtained
from 1H NMR data of 9-(S)- and 9-(R)-MTPA esters (3a
and 3b, respectively) showed negative values for H-4
(-0.02), H2-5 (both -0.02), H2-8 (-0.02 and -0.11), and
H3-23 (-0.01), while those of H-10 (+0.07), H-11 (+0.06),
and H3-24 (+0.14) were positive, suggesting that C-9
possessed S-configuration. Amphidinolide Y (1) was

treated with lead tetraacetate to afford amphidinolide X
(2), of which the spectral data including the CD spectrum
[λext 224 nm (∆ε -7.9)] were the same as those of natural
specimen of 2 [λext 225 nm (∆ε -8.7)]. Therefore, the
absolute configurations at seven chiral centers were
assigned as 4S, 7R, 9S, 10R, 15S, 16R, and 18R.

Feeding experiments with [1-13C], [2-13C], and [1,2-13C2]
sodium acetates were carried out as reported previously,11

and 13C-labeled amphidinolide Y (1) was separated by the
same procedure as described before. The 13C NMR spectra
(CDCl3 and C6D6) of 1 derived from [1-13C] sodium acetate
showed significant enrichment of 8 carbons (C-1, C-4, C-8,
C-10, C-13, C-15, C-18, and C-20). On the other hand,
enrichment by [2-13C] sodium acetate was observed for
18 carbons (C-2, C-3, C-5, C-6, C-7, C-9, C-11, C-12, C-14,
C-16, C-17, C-19, C-21, C-22, C-23, C-24, C-25, and C-26),
though intensity ratios for C-6, C-7, and C-12 were less
than those of others. One-bond C-C couplings for C-1/
C-2 (JCC, 73 Hz), C-4/C-5 (JCC; 32 Hz), C-8/C-9 (41 Hz),
C-10/C-11 (44 Hz), C-13/C-14 (35 Hz), C-15/C-16 (40 Hz),
C-18/C-19 (JCC, 40 Hz), and C-20/C-21 (JCC, 35 Hz)
revealed the incorporation of eight intact acetates, sug-
gesting the presence of two acetates from C-1 to C-2 and
from C-4 to C-5 and three diketides from C-8 to C-11,
from C-13 to C-16, and from C-18 to C-21. The C1

branches at C-22, C-23, C-24, C-25, and C-26 were all
derived from C-2 of acetates, in which the carbonyl
carbons were lost. All 26 carbon signals contained in the
6-keto form (1a) of amphidinolide Y (1) were shown to
be labeled by acetates (Figure 4). These incorporation
patterns suggested that 1a was generated from three
diketide units, two acetate units, three isolated "m“ units
from C-2 of acetates, a ”m-m" unit, and five branched
C1 units from C-2 of acetates. The labeling patterns at
C-1-C-6 and C-23-C-7-C-21 parts in 1a corresponded
to those at diacid and diol units in amphidinolide X (2),
indicating that 2 might be generated from 1a through
oxidative cleavage at the C-6-C-7 position of the minor
6(9)-hemiacetal form (1b).

The 6-keto form (1a) of amphidinolide Y (1) is a new
17-membered macrolide possessing a tetrahydrofuran
ring, five branched methyls, a ketone, and two hydroxyl
groups, and 1b is 6(9)-hemiacetal isomer of 1a. Amphi-
dinolide Y (1) is considered to be a biogenetic precursor
of amphidinolide X (2). Amphidinolide Y (1) exhibited
cytotoxicity against murine lymphoma L1210 and human
epidermoid carcinoma KB cells in vitro with IC50 values
of 0.8 and 8.0 µg/mL, respectively.

Experimental Section

Cultivation and Isolation. The dinoflagellate Amphidinium
sp. (strain no. Y-42) was separated from the inside cells of the
marine acoel flatworm Amphiscolops sp., which was collected
off Sunabe, Okinawa. The dinoflagellate was unialgally cultured
at 25 °C for 2 weeks in seawater medium enriched with 1% ES
supplement and 13C-lableled sodium bicarbonate (100 mg/L). The
harvested cells (315 g, wet weight, from 500 L of culture) were
extracted with MeOH/toluene (3:1, 1 L × 3). After addition of 1
M NaCl aq (1 L), the mixture was extracted with toluene (1 L ×
3). Parts (1.27 g) of the toluene-soluble fractions (3.78 g) were
subjected to a silica gel column (CHCl3/MeOH, 98:2) and a Sep-
Pak cartridge C18 (MeOH/H2O, 8:2) followed by C18 HPLC
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Chem. Soc. 1991, 113, 4092-4096.
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FIGURE 3. NOESY correlations for the C-3-C-11 portion in
the 6-keto form (1a) of amphidinolide Y (1).

FIGURE 4. Labeling patterns of the 6-keto form (1a) of
amphidinolide Y (1) and amphidinolide X (2) resulting from
feeding experiments with 13C-labeled acetates.
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[Mightysil RP-18, 5 µm, Kanto Chemical Co., Inc., 10 × 250 mm;
eluent, CH3CN/H2O (85:15); flow rate, 3 mL/min; UV detection
at 220 nm] to afford amphidinolide Y (1, 2.3 mg, 0.0007%, wet
weight, tR 14 ∼ 16 min) and together with amphidinolides G
(0.0008%), H (0.0007%), W (0.009%), and X (2, 0.004%).

Amphidinolide Y (1): a colorless oil; [R]17
D -33° (c 1.0,

CHCl3); UV (EtOH) λmax 208 nm (ε 12 400); IR (neat) νmax 3450,
2928, and 1711 cm-1; FABMS m/z 433 (M - H2O + H)+ and
451 (M + H)+; ESIMS m/z 451 (M + H)+ and 473 (M + Na)+;
HRESIMS m/z 473.2875 [calcd for C26H42O6Na (M + Na)+,
473.2879].

(S)-MTPA Ester (3a) of Amphidinolide Y (1). To a CH2-
Cl2 solution (50 µL) of amphidinolide Y (1, 0.18 mg) was added
4-(dimethylamino)pyridine (50 µg), triethylamine (5 µL), and (R)-
(-)-MTPACl (1.5 µL) at 4 °C, and stirring was continued for 3
h. After addition of N,N-dimethyl-1,3-propanediamine (5 µL) and
evaporation of solvent, the residue was subjected to C18 HPLC
(TSK-gel ODS-100S, Tosoh Co., Ltd., 4.6 × 250 mm; eluent CH3-
CN/H2O, 95:5; flow rate, 1.0 mL/min; UV detection at 230 nm)
to give 9-(S)-MTPA ester (3a, 0.1 mg, tR 12.6 min) of amphidi-
nolide Y (1) as colorless oil: 1H NMR (CDCl3) δ 0.89 (3H, t, J )
7.0 Hz, H3-21), 0.96 (3H, d, J ) 6.5 Hz, H3-24), 1.15 (3H, d, J )
6.6 Hz, H3-22), 1.20 (3H, s, H3-26), 1.30 (2H, m, H2-20), 1.36 (3H,
s, H3-23), 1.40 (1H, m, H-8), 1.45-1.54 (3H, m, H-14 and H2-
19), 1.55 (1H, m, H-8), 1.66 (3H, s, H3-25), 1.74 (1H, dd, J ) 2.0,
14.2 Hz, H-17), 1.81 (1H, m, H-14), 2.12 (2H, m, H2-13), 2.14
(1H, dd, J ) 7.8, 14.2 Hz, H-17), 2.51 (1H, m, H-5), 2.55 (1H, m,
H-5), 2.56 (1H, m, H-10), 3.00 (1H, m, H-4), 3.51 (3H, s, OCH3),
3.85 (1H, m, H-15), 4.95 (1H, brt, J ) 4.0 Hz, H-16), 5.13 (1H,
brd, J ) 8.0 Hz, H-9), 5.50 (1H, d, J ) 8.5 Hz, H-11), 5.72 (1H,
d, J ) 15.6 Hz, H-2), 6.52 (1H, dd, J ) 9.3, 15.6 Hz, H-3), 7.39
(3H, m, Ph), and 7.62 (2H, m, Ph); FABMS m/z 667 (M + H)+;
HRFABMS m/z 667.3435 [calcd for C34H50O8F3 (M + H)+,
667.3458].

(R)-MTPA Ester (3b) of Amphidinolide Y (1). Amphidi-
nolide Y (1, 0.44 mg) was treated with 4-(dimethylamino)-
pyridine (50 µg), triethylamine (5 µL), and (S)-(+)-MTPACl (1.5
µL) by the same procedure as described above to afford the 9-(R)-
MTPA ester (3b, 0.1 mg, tR 12.4 min) of amphidinolide Y (1) as
colorless oil: 1H NMR (CDCl3) δ 0.82 (3H, d, J ) 6.5 Hz, H3-
24), 0.89 (3H, t, J ) 7.0 Hz, H3-21), 1.15 (3H, d, J ) 6.6 Hz,
H3-22), 1.23 (3H, s, H3-26), 1.30 (2H, m, H2-20), 1.37 (3H, s, H3-
23), 1.40-1.54 (4H, m, H-14, H-8, and H2-19), 1.57 (1H, m, H-8),
1.61 (3H, s, H3-25), 1.72 (1H, dd, J ) 2.0,14.2 Hz, H-17), 1.76
(1H, m, H-14), 2.06 (2H, m, H2-13), 2.12 (1H, dd, J ) 7.8, 14.2
Hz, H-17), 2.49 (1H, m, H-10), 2.53 (1H, m, H-5), 2.57 (1H, m,
H-5), 3.02 (1H, m, H-4), 3.53 (3H, s, OCH3), 3.82 (1H, m, H-15),

4.94 (1H, brt, J ) 4.0 Hz, H-16), 5.06 (1H, brd, J ) 8.0 Hz, H-9),
5.44 (1H, d, J ) 8.5 Hz, H-11), 5.72 (1H, d, J ) 15.6 Hz. H-2),
6.53 (1H, dd, J ) 9.3, 15.6 Hz, H-3), 7.38 (3H, m, Ph), and 7.60
(2H, m, Ph); FABMS m/z 667 (M + H)+; HRFABMS m/z 667.3467
[calcd for C34H50O8F3 (M + H)+, 667.3458].

Oxidation of Amphidinolide Y (1) with Lead Tetraac-
etate. Amphidinolide Y (1, 0.2 mg) was treated with lead
tetraacetate (0.5 mg) in EtOAc (50 µL) at room temperature for
15 h. After filtration of insoluble materials, the solvent was
evaporated to afford amphidinolide X (2, 0.1 mg) as a colorless
oil: CD (MeOH) λext 224 nm (∆ε -7.9); FABMS m/z 449 (M +
H)+; HRFABMS m/z 449.2918 [calcd for C26H41O6 (M + H)+,
449.2903]. 1H NMR data of 2 were consistent with those of
natural specimen.

Feeding Experiments with 13C-Labeled Precursors. The
dinoflagellate cultured in a 100 L nutrient-enriched seawater
medium was supplemented with [1-13C], [2-13C], or [1,2-13C2]
sodium acetate (610 µM) in one portion at 4 days after inocula-
tion, and then the culture was harvested by centrifugation after
14 days to obtain cells of the dinoflagellate (70 g as an average,
wet weight). Extraction and isolation of amphidinolide Y (1) from
the harvested cells were carried out through the same procedure
as described above. The 13C-labeled amphidinolide Y (1) was
obtained in 0.001% yield as an average from wet weight of the
cells.
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